Mechanics of Materials

Direct Stress :-

1.1 Load : A body/members subjected to external forces, which is called Load on the member.
\rightarrow Since the member is in equilibrium the resultant of all the forces acting on it must be zero, but they produce a tendency for the body to be displaced/deformed.
\rightarrow The displacement/deformation is resisted by the internal forces of cohesion between particles of material
\rightarrow Direct pull/push is the simplest type of Load.
\rightarrow Unit of Load. (Kg/Newton)

$$
1 \mathrm{Kg}=9.81 \text { Newton }(\mathrm{N})
$$

Ex Steel wire of a crane hook
4 (rope)

Compression

Ex Leg of a table.
\rightarrow In both cases, two equal \& opposite forces act on a member \& tendency to deform/fracture it,
\rightarrow Here, the member is in static condition.
\rightarrow It the member is in motion, Load may be due to dynamic action/inertia forces.

1.2 Stress :-

\rightarrow The force is distributed among the internal forces of cohesion, which is called stresses.
\rightarrow Cut the member through section ' XX '.
\rightarrow Each portion (A \& B) is in equilibrium under the action of external Load ' P ' \& stresses at ' X ' x.
\rightarrow Stresses which are normal to the plane on which they act are called direct stresses. (tensile/compressive)
\rightarrow Force transmitted across any section divided by the area of that section is called intensity of stress or stress.

$$
\sigma=P / A
$$

1.3 Principle of St. Venant :- It states that the actual distribution of Load over the surface of its application will not affect the distribution of stress or strain on sections of body which are at an appreciable distance.

Ex- For points in rod distant more than 3-times its greatest width from the area of Loading

1.4 strain

Longitudinal Strain $=\left(\frac{\sigma l}{l}\right)$

1.5 Modulus of elasticity

$$
\mathrm{E}=\frac{(P / A)}{\left(\frac{\sigma l}{l}\right)}=\left(\frac{P l}{A \sigma l}\right)
$$

1.6 Compound Bars

Both bars have same initial length \& after deformation the two bars must remain together.
\rightarrow Therefore, strain in each part must be same.
\rightarrow Stress developed in each part (bar) will be different. Hence, the Load shared each bar will be different.
\rightarrow Suppose Loads are $\mathrm{w}_{1}, \mathrm{w}_{2} \&$ corresponding area of C / S are $\mathrm{A}_{1} \& \mathrm{~A}_{2}$

$$
\begin{align*}
& (\text { strain })_{1}=(\text { strain })_{2} \\
& \Rightarrow \quad \frac{W_{1}}{A_{1} E_{1}}=\frac{W_{2}}{A_{2} E_{2}} \quad \ldots(1) \\
& \rightarrow \text { Total Load } ; \quad P=W_{1}+W_{2}
\end{align*}
$$

$$
\begin{aligned}
& \Rightarrow P=W_{1}+\left(\frac{A_{2}}{A_{1}} \frac{E_{2}}{E_{1}}\right) W_{1} \\
& \Rightarrow P=W_{1}\left(1+\frac{A_{2} E_{2}}{A_{1} E_{1}}\right) \\
\mathrm{W}_{1}=?= & \left(\frac{P A_{1} E_{1}}{A_{1} E_{1}+A_{2} E_{2}}\right) \\
\mathrm{W}_{2}=?= &
\end{aligned}
$$

*A tensile or compressive member which consists of two or more bars/tubes in parallel, of different materials is called a 'compound bar'.

Q-1 A rod of length ' I ' tapers uniformly from a diameter ' D ' at one end to a diameter ' d ' at the other. Find the extension (change in length) caused by an axial Load ' P '.

Ans

\rightarrow Diameter of rod at a distance of ' x ' from smaller end is

$$
D_{x}=\left[d+\frac{(D-d) x}{l}\right]
$$

\rightarrow The extension/elongation of a short length ' dx ' is

$$
=\frac{P . d x}{\left(\frac{\pi}{4} D_{x}^{2}\right) E}=\left[\frac{4 P d_{x}}{\pi D_{x}^{2} E}\right]
$$

Total elongation for the whole rod;

$$
\begin{aligned}
\sigma & =\int_{o}^{l} \frac{4 P \cdot d x}{\pi D_{x}^{2} \cdot E} \\
& =\int_{o}^{l} \frac{4 P \cdot d x}{\pi\left[d+\frac{(D-d) x^{2}}{l}\right] \cdot E}
\end{aligned}
$$

*take $\left[d+\frac{(D-d) x^{2}}{l}\right]=t$
$=-\left(\frac{l}{D-d}\right) \cdot \frac{4 P}{\pi E}\left[\frac{1^{l}}{d+\frac{(D-d) x}{l}}\right]$
$=\frac{4 P l}{\pi E(D-d)}\left(\frac{1}{d}-\frac{1}{D}\right)$
$=\left(\frac{4 P l}{\pi D d E}\right)$
Strain $=\left(\frac{\sigma l}{l}\right)=\left(\frac{4 P}{\pi D d E}\right)$
*Stress will vary as the cross - section (A) will vary from point to point.

1.7 Temperature stresses in bars :-

Let 'L' = Coefficient of thermal expansion for the material/bar.
\rightarrow When a bar is subjected to change in temperature, stress is developed in bar. These stresses are known as temperature stresses.

$$
\left\{\begin{array}{l}
\text { Temprature }=\mathrm{t}^{0} \mathrm{C} \\
\text { Length of bar }=\mathrm{l} \\
\text { Co-efficient of thermal expansion }=\mathrm{L}
\end{array}\right.
$$

\rightarrow Elongation/extension in bar $=(\mathrm{L}+\mathrm{I})$

$$
\Rightarrow \quad \sigma \mathrm{l}=\mathrm{L}+\mathrm{l}
$$

*t= change in temperature
$\rightarrow \sigma=\sum E$

$$
=\frac{\sigma l}{l} \cdot E=(L+E)
$$

\rightarrow Consider two bars of different material having same initial length(I). If it will be subjected to change in temperature $\left(I^{\circ} \mathrm{C}\right)$ freely/independently; then their expansion will depend on the soccreponding thermal-expansion-coefficient.

Example.

Steel bar \& copper bar

$$
\left(L_{s}\right) \quad \rightarrow\left(L_{c}\right)
$$

Expansion \rightarrow Lstl..................... $\mathrm{L}_{\mathrm{c}} \mathrm{t}$
\checkmark Which bar will expand more, it will depend on coefficient-of-thermal-expansion.
\rightarrow Assume $L_{c}=18 \times^{10^{-6}} / 0^{c}$

$$
\mathrm{L}_{\mathrm{s}}=11 \times 10^{-6} / 0_{0}
$$

It shows that capper bar will expand more than steel bar it were free.
*For the case of compound bar, both will expand simultaneously so that final lengths will be same.

Equilibrium equation :-

Copper will be prevented from expanding its full amount \& it is in compression \& steel tube is in tension. Finally the compound bar takes an intermediate position. Therefore,

Compression in copper rod $=$ Tension in steel tube

$$
\Rightarrow \quad \sigma_{c u} A_{c u}=\sigma_{s} A_{s}
$$

$$
\left\{\begin{array}{l}
\sigma_{c u}=\text { Compressive stress in copper } \\
\sigma_{s}=\text { Tensile stress in steel }
\end{array}\right.
$$

Compatibility equation :-

> Initial \& final lengths are same.
\Rightarrow (Temperature strain of rod - compressive strain)

$$
\begin{aligned}
& \left(L_{c u} t\right) \\
= & (\text { Temperature strain of tube }+ \text { tensile strain })
\end{aligned}
$$

$$
\left(L_{s} \cdot t\right)
$$

$$
\left\{\begin{array}{l}
\text { Compressive strain }=\left(\frac{\sigma_{c u}}{E_{c u}}\right) \\
\text { Tensile strain }=\left(\frac{\sigma_{s}}{E_{s}}\right)
\end{array}\right.
$$

Shear Stress :-

2.1 Shear Stress :-

\rightarrow Apply a force (P) tangentially on the face of ' $A B^{\prime}$ '. Then, there is a tendency for one part of body to slide over/shear from other part across any section ' MN '.
\rightarrow If the $\mathrm{C} / \mathrm{S}^{\prime} \mathrm{MN}$ ' is parallel to the Load (P) \& say it 'A'; then τ (Shear stress) $=\frac{P}{A}$

2.2 Complementary Sheer Stress :-

\rightarrow Let there be a shear stress acting on planes $A B \& C D$.

These stresses will form a couple equal to ($\tau . x z$) y

$A=(x z)=$ Area of 'AB' plane.
Force $=\tau \times A$

$$
=\tau x(x z)
$$

\rightarrow The couple can be balanced by tangential forces on plane 'AD' \& 'BC' The stresses on that plane are called complementary shear stresses (τ^{\prime})

$$
\begin{aligned}
(\tau . x z) y & =\left(\tau^{\prime} . y z\right) x \\
& \Rightarrow \tau^{\prime}=\tau
\end{aligned}
$$

*Every shear stress is accompanied by an equal complementary shear stress on planes at right angles.

2.3 Shear strain :-

$\emptyset=$ Change in right angles

$$
=\left(\frac{d x}{x}\right)
$$

For small value of ' \varnothing ’

$$
\operatorname{Tan} \varnothing=\varnothing=\frac{d x}{x}
$$

2.4 Modules of rigidity :-

\rightarrow Shear strain is proportional to shear stress within certain Limit.

$$
\frac{\text { Shear Stress }}{\text { Sheer Strain }}=\mathrm{G}
$$

$$
\Rightarrow \quad \frac{\tau}{\bar{\emptyset}}=G \longrightarrow N / \mathrm{mm}^{2}
$$

Shear modules/modules of rigidity

2.5 Strain energy :-

Strain energy $=$ Work done in straining $=\frac{1}{2}$ (Final couple) x (Angle turned through.)

Complex Stress / Compound Stress :-

3.1 Introduction -

\rightarrow If both direct \& shear stress will act into a section, the resultant of both will be neither normal nor tangential to the plane.

$$
\text { angle }=\beta \text { (say) }
$$

Suppose ' σ_{r} ' is the resultant of normal stress $(\sigma) \&$ shear (τ); \& it makes an angle ' θ ' with the normal to the plane.

$$
\begin{gathered}
\mathrm{C}_{r}=\sqrt{\sigma^{2}+\tau^{2}} \\
\operatorname{Tan} \beta=\left(\frac{\tau}{\sigma}\right) \\
\Rightarrow \beta=\tan ^{-1}\left(\frac{\tau}{\sigma}\right)
\end{gathered}
$$

3.2 Stress acting on a plane inclined θ^{0} to the direction of the transverse section \& $(90+\theta)^{2}$ to the Force :-

Fig (2)

Fig(4)
$\rightarrow \quad$ Take a thickness of ' t ' ${ }^{\mathrm{ar}}$ to the figure-4.
$\rightarrow \quad$ Resolve the forces in the direction of ' σ_{θ} '
$\mathrm{E}_{\theta} \cdot \mathrm{AC} \cdot \mathrm{t}=\mathrm{\sigma}_{1} \cdot \mathrm{AB} \cdot \mathrm{t} \cdot \cos \theta$

$$
\begin{aligned}
\Rightarrow \sigma_{\theta} & =\sigma_{1} \cdot\left(\frac{A B}{A C}\right) \cdot \cos \theta \\
& =\sigma_{1} \cdot \cos ^{2} \theta
\end{aligned}
$$

\rightarrow Resolve the forces in the direction of ' τ_{θ} '

$$
\begin{gathered}
\tau_{\theta} \cdot \mathrm{AC} \cdot \mathrm{t}=\sigma_{1} \cdot \mathrm{AB} \cdot \mathrm{t} \cdot \sin \theta \\
\Rightarrow \tau_{\theta}=\frac{\sigma_{1}}{2} \sin 2 \theta \\
\rightarrow \sigma_{r}=\text { Resultant stress }
\end{gathered}
$$

$$
\begin{aligned}
& =\sqrt{\sigma_{\theta}^{2}+\tau_{\theta}^{2}} \\
& =\sigma_{1} \sqrt{\left(\cos ^{4} \theta+\cos ^{2} \theta \cdot \sin ^{2} \theta \cdot\right)} \\
& =\sigma_{1} \cdot \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
& \tan _{\beta}=\left(\frac{\tau_{\theta}}{\sigma_{\theta}}\right) \\
& \Rightarrow \beta=\tan ^{-1}\left(\frac{\tau_{\theta}}{\sigma_{\theta}}\right)
\end{aligned}
$$

3.3 Stresses on an inclined plane due to two normal stresses (Pure normal stresses)

$\left(\sigma_{1} x A B x t\right) \cos \theta+\sigma_{2}(B C) x t \times \sin \theta$

3.5 Two dimensional stress system :-

$\sigma_{\theta}=\frac{1}{2}\left(\sigma_{1}+\sigma_{2}\right)+\frac{1}{2}\left(\sigma_{1}-\sigma_{2}\right) \cos 2 \theta+\tau \cdot \sin 2 \theta$
$\tau_{\theta}=\frac{1}{2}\left(\sigma_{1}-\sigma_{2}\right) \sin 2 \theta-\tau \cos 2 \theta$

3.6 Principal Planes \& Principal Stresses :-

From para (3.5), we observed that $\sigma_{\theta}=0$, for some values of ' θ '.
*The planes on which the shear component is zero $\left(\tau_{\theta}=0\right)$ are called principal planes.

$$
\begin{aligned}
\tau_{\theta} & =0\left\{\text { equ }^{n} \text { of ' } \tau_{\theta}\right. \text { ' is from (3.5) para. } \\
\Rightarrow \tan 2 \theta & =\left(\frac{2 \tau}{\sigma_{y}-\sigma_{x}}\right)
\end{aligned}
$$

\rightarrow The stresses on the principal planes are called principal stresses.

It is pure normal (tension/compression)

$$
\begin{aligned}
& \sin 2 \theta= \pm \frac{2 \tau}{\sqrt{\left(\sigma_{y}-\sigma_{x}\right)^{2}+4 \tau^{2}}} \\
& \operatorname{Cos} 2 \theta= \pm \frac{\left(\sigma_{y}-\sigma_{x}\right)}{\sqrt{\left(\sigma_{y}-\sigma_{x}\right)^{2}+4 \tau^{2}}}
\end{aligned}
$$

Principal stresses $\left(\sigma_{\theta}\right)=\frac{1}{2}\left(\sigma_{y}+\sigma_{x}\right) \pm$

$$
\frac{\frac{1}{2}\left(\sigma_{y}-\sigma_{x}\right)^{2}}{\sqrt{\left(\sigma_{y}-\sigma_{x}\right)^{2}+4 \tau^{2}}} \pm \frac{\tau .2 \tau}{\sqrt{\left(\sigma_{y}-\sigma_{x}\right)^{2}}+4 \tau^{2}}
$$

*Principal stresses are the maximum \& minimum of normal stresses
\checkmark They may be maximum tensile \& maximum compressive stress.

\rightarrow Simplified from

$$
\left(\sigma_{\theta}\right)=\frac{\left(\sigma_{y}+\sigma_{x}\right)}{2} \pm \frac{1}{2} \sqrt{\left(\sigma_{y}-\sigma_{x}\right)^{2}+4 \tau^{2}}
$$

3.8 Maximum Shear Stresses :-

$\sigma_{\theta} x(A C x t)=\left\{\left(\sigma_{1} x A C x t\right) x \sin \theta\right.$

$$
\left.-\left(\sigma_{2} x B C x t\right) \cos \theta\right\}
$$

$$
\Rightarrow \tau_{\theta}=\frac{1}{2}\left(\sigma_{2}-\sigma_{1}\right) \sin 2 \theta
$$

*If $2 \theta=90^{\circ}, \sin 2 \theta=1$

$$
\left(\tau_{\theta}\right)_{\max }=\left(\frac{\sigma_{2}-\sigma_{1}}{2}\right)
$$

3.9 Mohr's stress circle :-

$$
P L=\sigma_{2} \& P M=\sigma_{1}
$$

$$
\mathrm{OL} \rightarrow \text { ' } \mathrm{BC} C^{\prime} \text { Plane }\left(\sigma_{2}\right)
$$

$$
\mathrm{OM} \rightarrow \text { 'AB’ Plane }\left(\sigma_{1}\right)
$$

Section of + he speciman

Mohr's
stress
circle
\rightarrow Plane ' $A C^{\prime}$ ' is obtained by rotating the ' $A B^{\prime}$ ' through ' θ ' anticlockwise.
\rightarrow In stress circle, OM (AB-Plane) is rotated through ' $2 \theta^{\prime}$ ' in anticlockwise direction.

$$
\begin{aligned}
\mathrm{PN}= & \mathrm{PO}+\mathrm{ON} \\
& =\frac{1}{2}\left(\sigma_{1}+\sigma_{2}\right)+\frac{1}{2}\left(\sigma_{1}-\sigma_{2}\right) \cos 2 \theta \\
= & \sigma_{1}\left(\frac{1-\cos 2 \theta}{2}\right)+\sigma_{1}\left(\frac{1+\cos 2 \theta}{2}\right) \\
= & \sigma_{1} \sin ^{2} \theta+\sigma_{2} \cos ^{2} \theta \\
= & \sigma_{\theta} \text { (Normal stress component on 'AC') }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{RN} & =\frac{1}{2}\left(\sigma_{1}-\sigma_{2}\right) \sin 2 \theta \\
& =\tau_{\theta} \text { (shear stress component on 'AC' }
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{r}=\sqrt{\sigma_{\theta}^{2}+C_{\theta}^{2}} \\
& \quad=\mathrm{PR}
\end{aligned}
$$

${ }_{\text {Dexvation }}^{*} \sigma_{\theta}=\left(\frac{\sigma_{1}+\sigma_{2}}{2}\right)+\frac{1}{2}\left(\sigma_{1}-\sigma_{2}\right) \cos 2 \theta$

$$
\tau_{\theta}=\left(\frac{\sigma_{1}-\sigma_{2}}{2}\right) \sin 2 \theta
$$

$$
\operatorname{Let}\left(\frac{\sigma_{1}+\sigma_{2}}{2}\right)=\sigma_{a v}
$$

$$
\left(\frac{\sigma_{1}-\sigma_{2}}{2}\right)=\sigma_{\max }
$$

Hence, $\sigma_{\theta}=\sigma_{\mathrm{av}}+\sigma_{\max } \cos 2 \theta$

$$
\begin{gathered}
\& \tau=\tau_{\operatorname{ma}} \mathrm{x} \cdot \sin 2 \theta \\
\Rightarrow\left(\sigma_{\theta}-\sigma_{a v}\right)=\tau_{\max } \sqrt{1-\sin ^{2} 2 \theta}
\end{gathered}
$$

$$
\Rightarrow\left(\sigma_{\theta}-\sigma_{a v}\right)=\tau_{\max } \sqrt{1-\frac{\tau^{2}}{\tau_{\max }^{2}}}
$$

$$
\Rightarrow\left(\sigma_{\theta}-\sigma_{a v}\right)^{2}+\tau^{2}=\tau_{\max }^{2}
$$

\longrightarrow \& centre is on x-axis at \longrightarrow

$$
\longrightarrow\left(\sigma_{a v}=\frac{\sigma_{1}+\sigma_{2}}{2}\right)
$$

\rightarrow Plane Stress
\rightarrow Plane Strain
\rightarrow Bending of Beam :- (N-A), Fibre Layer
\rightarrow Stresses in Beam $\left(\sigma_{x}, \sigma_{y}, \tau_{x y}\right), \sigma_{z}=0$
Plane stress problem (thickness :- z-direc ${ }^{\mathrm{n}}$)

$$
E_{x}, E_{y}, r_{x y}
$$

Ex

$$
E_{x}=\left(\frac{D_{1} A \prime}{d s}\right)
$$

$$
\text { Ey } \quad E_{y \alpha}=\left(\frac{D_{1} A 1}{d s}\right)
$$

$r_{x y}$
$r_{x y}$

$$
\begin{gathered}
\Rightarrow E_{a}=E_{x} \cos ^{2} \alpha+E y \sin ^{2} \alpha-r_{x y} \sin \alpha \cdot \cos \alpha \\
E_{b}=E(90+\alpha)=E_{x} \cos ^{2} \alpha+E y \sin ^{2} \alpha \frac{+r_{x y} \sin ^{2} \alpha}{2}
\end{gathered}
$$

3.10 Analysis of strain

$$
\begin{gathered}
E_{y}=E_{x} \cos ^{2} \alpha \\
+E_{y} \sin ^{2} \alpha+\left(\frac{r_{x y}}{2}\right) \sin 2 \alpha \\
\Rightarrow E_{\alpha}=E_{x}\left(\frac{1+\cos 2 \alpha}{2}\right)+E_{y}\left(\frac{1-\cos 2 \alpha}{2}\right)+\left(\frac{r_{x y}}{2}\right) \sin 2 \alpha \\
\Rightarrow E_{\alpha}=\left(\frac{E_{x}+E_{y}}{2}\right)+\left(\frac{E_{x}-E_{y}}{2}\right) \cos 2 \alpha+\left(\frac{r_{x y}}{2}\right) \sin 2 \alpha
\end{gathered}
$$

\rightarrow To get principal strain, $\left(E_{1}, E_{2}\right)$ are the maximum $\&$ minimum value of 'E α^{\prime}, hence, put $\left(\frac{d E_{\alpha}}{d \alpha}\right)=0$
$\Rightarrow \tan 2 \alpha=\left(\frac{r_{x y}}{E_{x}-E_{y}}\right)$
(* Principal stresses are the maximum \& minimum values of normal stresses in the two dimensional geometry.
$\mathrm{E}_{\mathrm{x}}, \mathrm{E}_{\mathrm{y}} \rightarrow$ Linear strain
$r_{x y} \rightarrow$ Shear strain in 'XOY' plane.
$\mathrm{E}_{\mathrm{a}}, \mathrm{E}_{\mathrm{b}} \rightarrow$ Linear strain in ' $\mathrm{OA}^{\prime} \&{ }^{\prime} \mathrm{OB}^{\prime}$ direc $^{\mathrm{n}}$

$$
\begin{aligned}
& E_{a}=\left(E_{\alpha}\right)=\underbrace{E_{x} \cdot \cos ^{2} \alpha+E_{y} \sin ^{2} \alpha-\left(\frac{r_{x y}}{2}\right) \sin 2 \alpha} \\
& E_{b}=E_{(90+\alpha)}=\underbrace{E_{x} \cdot \sin ^{2} \alpha+E_{y} \cos ^{2} \alpha+\left(\frac{r_{x y}}{2}\right) \cdot \sin 2 \alpha}_{r_{a b} \rightarrow \text { Shear strain corresponds to }}
\end{aligned}
$$

\rightarrow simplifying the equ ${ }^{n}$ for ($\left.E_{a}, E_{b}, \& r_{a b}\right)$
$E_{a}=\underbrace{\left(\frac{E_{x}+E_{y}}{2}\right)+\left(\frac{E_{x}-E_{y}}{2}\right) \cos 2 \alpha-\left(\frac{r_{x y}}{2}\right) \cdot \sin 2 \alpha}$
$E_{b}=\underbrace{\left(\frac{E_{x}+E_{y}}{2}\right)+\left(\frac{E_{x}-E_{y}}{2}\right) \cos 2 \alpha-\left(\frac{r_{x y}}{2}\right) \cdot \sin 2 \alpha}$
$y_{a b}=\underbrace{\left(E_{x}-E_{y}\right) \cdot \sin 2 \alpha-r_{x y} \cdot \cos 2 \alpha}$
or $\left(\frac{r_{a b}}{2}\right)=\underbrace{\left(\frac{E_{x}-E_{y}}{2}\right) \cdot \sin 2 \alpha+\left(\frac{r_{x y}}{2}\right) \cos 2 \alpha}$
$\rightarrow A$ state of plane strain is defined by $E_{x}, E_{y}, r_{x y}$.
\rightarrow There are two mutually $\perp^{\text {ar }}$ directions (Lines) $01 \& 02$ which remain right angle to each other after defromation.
*If we will find Linear strains in that directions ($01 \& 02$), it will give the maximum \& minimum values.
\rightarrow Therefore, $\mathrm{Y}_{12}=0$

If we will put $Y_{a b}=0$, we aill get the necessay condition for Principal strains.

$$
\begin{gathered}
\mathrm{Y}_{\mathrm{ab}}=0 \\
\Rightarrow \underbrace{\tan 2 \alpha_{1}=\left(\frac{r_{x y}}{E_{y}-E_{x}}\right)})
\end{gathered}
$$

Principal $\quad E_{1}=\left(\frac{E_{x}+E_{y}}{2}\right)+\sqrt{\left(\frac{E_{x}-E_{y}^{2}}{2}\right)+\left(\frac{r_{x y}}{2}\right)^{2}}$
Strains $\quad E_{2}=\left(\frac{E_{x}+E_{y}}{2}\right)+\sqrt{\left(\frac{E_{x}-E_{y}^{2}}{2}\right)+\left(\frac{r_{x y}}{2}\right)^{2}}$

$$
\begin{aligned}
& \quad\left(E_{x}-E_{y}\right)=\mathrm{N}^{\prime} \mathrm{N} \\
& \mathrm{RN}=\left(\frac{r_{x y}}{2}\right) \\
& \mathrm{E}_{1}=\mathrm{PM}=\mathrm{PO}+\mathrm{OM}=(\mathrm{PO}+\mathrm{OR}) \\
& \mathrm{E}_{2}=\mathrm{PL}=(\mathrm{PO}-\mathrm{LO}) \\
& =(\mathrm{PO}-\mathrm{OR})
\end{aligned}
$$

:- Mohr's Strain Circle :-

1) Analysis of strain :-

\rightarrow Ex \rightarrow Linear strain in x-direction.
Ey \rightarrow Linear strain in y-direction.
$\varnothing \rightarrow$ Shear strain.
$\mathrm{E} \theta \rightarrow$ linear strain in a direction inclined ' θ ' to x-axis.
Max ${ }^{m}$ velocity $\quad E_{1}=$ Principal strain on principal plane.
of strain.

$$
\mathrm{E}_{2}=\text { Principal strain on principal plane. }
$$

Min ${ }^{m}$ velocity
of strain.

$$
\begin{aligned}
& \rightarrow \tan 2 \theta=\frac{\emptyset}{\left(E_{x}+E_{y}\right)} \\
\rightarrow & E_{1}, E_{2}=\frac{1}{2}\left(E_{x}+E_{y}\right) \pm \frac{1}{2} \sqrt{\left(E_{x}-E_{y}\right)^{2}+\emptyset^{2}}
\end{aligned}
$$

2- Mohr's Strain Circle :-

\rightarrow Horizontal axis for Linear strain $\left(E_{x}, E_{y}\right)$
\rightarrow Vertical axis for half shear strain.

Shearing Force \& Bending Moment:-

4.1 Beam (definition) -

Beams are usually a straight horizontal member to carry vertical Load \& they are suitably supported to resist the vertical (transverse) Load \& induced bending in an axial plane.
\checkmark S/S Beam
\checkmark Cantilever Beam
\checkmark Fixed Beam
\checkmark Contineous Beam
*Frames are often used in building \& are composed of beams \& columns that are either pin or fixed connected.

4.2 Types of Load -

1) Conuntrated Load (Paint Load)
2) Distributed Load
$\left\{\begin{array}{l}\text { Uniforming distributed } \\ \text { Varying from point to point }\end{array}\right.$

4.3 Types of support -

1) Simple or free support (Roller)

Beam restes freely on it. The reaction will be normal to the support.
2) Hinge/pinned
3) Fixed

Shearing force :- of any section of a beam represents the tendency of the beam to one side of section to slide or shear Laturaly relative to other portion.

Or
\rightarrow The shear force at any section of a beam is the algebraic sum of the Lateral components of the forces scting on either side of the section.

Ex (1) -

Sign Convention :- From Left \longrightarrow Upward (+ve)

From Right \longrightarrow Downward (+ve)
*When a force is neither nor lateral direction it must be resolved in the two cesual direction (Horizontal component \& vertical components). The vertical component will be taken into account in the shearing sorce.
\rightarrow The shear-force-diagram shows the variation of shear force along the length of beam.

Bending moment :- is the algebraic sum of moments about the section ($x-x$) of all the forces acting on either left or right side of the section.

Sign convention

$\left\{\begin{array}{l}\text { From Left }-\rightarrow \text { Clockwise (+ve) } \\ \text { From Right } \rightarrow \text { anticloskwise (+ve) }\end{array}\right.$

*This refers to sagging bending moment because it tends to make the beam concave upward at section A-A.
\rightarrow The negative bending moment is termed as hogging.

convex

Q - (1)

Q - (2)

Q-(3)

Thin Cylinders \& Spheres :-

1) Thin cylinder under internal pressure :-

L=Length of Cylinders
$\mathrm{D}=$ inside/internal dia
$\mathrm{P}=$ applied internal pressure
$\sigma_{1}=$ Circumferential stress.
$\sigma_{2}=$ Longitudinal stress.
$\mathrm{P}=$ Applied internal pressure in all direct ${ }^{\mathrm{n}}$
\rightarrow Three principal stresses act on the cylinder
(Circumferential, Longitudinal \& radial stresses)
\rightarrow If $t / d<1 / 20$; the circumferential stress (U1) \& longitudinal stress (2) are consist over the thickness.
$\left(\frac{t}{d}\right)<\frac{1}{20}\left\{\begin{array}{l}\text { The radial stress is equal to internal pressure (P) } \\ \text { At the inside surface \& zero at the outside surface. }\end{array}\right.$
\rightarrow Consider a half cylinder of length ' 1 '
$\rightarrow \sigma_{1}$ (Circumferential stress) acts on an area 2 tl
$\left\{\begin{array}{l}\mathrm{C} / \mathrm{s} \text { area }=9 \mathrm{txl}) \\ \text { For both open end of half cylinder, } \mathrm{C} / \mathrm{s} \text { area }=2 x(\mathrm{txl})\end{array}\right.$
$\left\{\begin{array}{l}\mathrm{C} / \mathrm{s} \text { area }=(\mathrm{tx} 1) \\ \text { For both the open end of half cylinder, } \mathrm{C} / \mathrm{s} \text { area }=2 \mathrm{x}(\mathrm{txl})\end{array}\right.$
\rightarrow Equating the vertical pressure forces in diametral plant, w have

$$
\begin{array}{crl}
& \sigma_{1} \times(2 \mathrm{tl})=\mathrm{pdl} & \mathrm{dl}=\text { Prejected } \\
\Rightarrow & \sigma_{1}=\frac{p d}{2 t} & \text { horizontal }
\end{array}
$$

\rightarrow Considering forces in horizontal dikection.
(Length/Longitudinal direction.)
$\checkmark \quad \sigma_{2}$ acts on the area $(2 \pi r) x t$.

\checkmark Equating forces

$$
\begin{aligned}
& \sigma_{2}(2 \pi r x t)=\operatorname{Px}\left(\pi r^{2}\right) \\
& \Rightarrow \sigma_{2}=\left(\frac{p r}{2 t}\right)
\end{aligned}
$$

2- Thin spherical shell under internal pressure :-
\rightarrow By Symmetry, both the principal stresses are equal $\left(\sigma_{1}=\sigma_{2}\right)$.

$$
\begin{aligned}
& \sigma(2 \pi r t)=P\left(\pi r^{2}\right) \\
& \Rightarrow \quad \sigma=\left(\frac{p r}{2 t}\right)
\end{aligned}
$$

3- Wire winding of thin cylinders :-

\rightarrow To strengthen the tube against the applied internal pressure; It may be wound with wire under tension.

\rightarrow Replace the wire by an equivalent cylindrical shell of thickness 'tw'

$$
\left.\mathrm{t}_{\mathrm{w}} \times \mathrm{d}=\frac{\pi d^{2}}{4}\right\} \quad \mathrm{C} / \mathrm{s} \text { is same in longitudinal plane. }
$$

\rightarrow Initial tensite stress in wire (σ_{w})
Suppose initial tension in wire $={ }^{\prime} T^{\prime}$

$$
\sigma_{\mathrm{w}}=\frac{T}{\pi r^{2}}
$$

\Rightarrow
\rightarrow If there is no internal pressure ' \underline{P} ',

then ' σ_{1} ' will become compressive in nature, due to pressure of wire.
$\checkmark \sigma_{1}=$ compressive circumferential stress-
\checkmark

$$
\sigma_{1} \times t \times I=\sigma_{w} x t_{w} \times I
$$

\rightarrow When internal pressure (P) is applied; the stresses in cylinder. $\left(\sigma^{1}{ }_{1}\right) \&$ stresses in wire $\left(\sigma^{1}{ }_{w}\right)$. Equating $\sigma^{1}{ }_{1} \mathrm{x}(2 \mathrm{t})+\sigma_{\mathrm{w}}{ }^{1} \mathrm{x}(2 \mathrm{tw})=\mathrm{P}(2 \mathrm{r})$ dia

Final circumferential stress.

\rightarrow Final longitudinal stress.

$$
\sigma_{2}=\left(\frac{p r}{2 t}\right)
$$

> *Wire is under stress in only one direct
\rightarrow Since wire \& cylinder is in contact, the change in circumferential (hwp) strain must be same. Hence,

$$
\frac{\left[\sigma_{1}+\left(\sigma_{1}^{1}-v_{2}^{\sigma}\right)\right]}{E}=\left(\frac{\sigma_{w}^{1}-\sigma_{w}}{E_{w}}\right)
$$

Strain in cylinder.
${ }^{*} \rightarrow \mathrm{E} 1=\left(\frac{\sigma_{1}-v \sigma_{2}-v \sigma_{3}}{E}\right) \rightarrow$ Hooks low for 3-D stress system.

-: Bucking of Column :-

\rightarrow Column is a compressive member. It is in transverse direction to the principal Loading direction. That is called bucking of columns.
\rightarrow The resistance towards bucking/(bending) is determined by El.
$\mathrm{E}=$ elastic modulus
$I=$ moment of inertia
\rightarrow Short column (strut) :- Effective length of compression member exceeds three times the least leteral dimensions.
\checkmark Long column.
\rightarrow Slenderness ratio $=\left(\frac{l e H, x}{i_{x}}\right) \operatorname{or}\left(\frac{l e H, y}{i y y}\right)$
\rightarrow For short column $\left(\frac{l e H, x}{i_{x x}}\right) \operatorname{or}\left(\frac{l e H, y}{i_{y y}}\right)<40$
$\left\{\begin{array}{l}I_{x x}=\text { radius of gyration w.r.t } x \text {-was } \\ I_{y y}=\text { radius of gyration w.r.t } y \text { - axis }\end{array}\right.$
radius of gyration w.r.tHinged strut Axially Loaded:-

O(origin)

From Deflection of beam, we have
El. $\frac{d^{2} y}{d x^{2}}=\mathrm{M} \quad \frac{\text { Signconvention }}{\text { Left }:- \text { Clockwise. }}(+\mathrm{ve})$
$=-P y \quad$ Right :- Anticlockwise
(+ve)
$\Rightarrow \quad d^{2} y \quad-----1$
... Where $\alpha^{2} \frac{\frac{d^{2} y}{d x^{2}}+\alpha^{2} y=0}{E I}$

$$
Y=A \sin \alpha x+B \cos \alpha x
$$

(i) At $x=0, y=0 ; B=0$
(ii) At $x=I, y=0 ; A \sin \alpha=0$

$$
\begin{aligned}
& \text { (} x \text { ' \& strut will not Bucket. } \\
& \left.\Rightarrow \alpha^{2}=\frac{\pi^{2}}{l^{2}} \quad \alpha \right\rvert\,=\pi \\
& \Rightarrow \\
& \frac{P}{E I}=\frac{\pi^{2}}{l^{2}}
\end{aligned}
$$

This will determine the least value of ' P ' which will cause the strut to bucket.
\rightarrow This is called 'Euler crippling load'.
2- Strut $P_{2}=\frac{\pi^{2} E I}{l^{2}}$ nds:-----------(3)

The equation for deflection of beam is

$$
\text { El. } \frac{d^{2} y}{d x^{2}}=-P y+M
$$

$\Rightarrow \frac{d^{2} y}{d x^{2}}+\left(\frac{P}{E I}\right) y=\left(\frac{M}{E I}\right)$
$\left.\Rightarrow \frac{d^{2} y}{d x^{2}}+\alpha^{2} \mathrm{y}=\left(\frac{M}{E I}\right) 2^{2}=\frac{P}{E I}\right)$
(4)

The solution of equ ${ }^{\sigma} 4$ is

$$
\mathrm{Y}=\mathrm{A} \sin \alpha \mathrm{x}+\mathrm{B} \cos <\mathrm{x}+\left(\frac{M}{E I \alpha^{2}}\right)
$$

(i) At $\mathrm{x}=\mathrm{o}, \mathrm{y}=\mathrm{o}$;

$$
\mathrm{B}+\left(\frac{M}{E I \alpha^{2}}\right)=0
$$

$$
\Rightarrow \quad \mathrm{B}=\frac{-M}{P}
$$

(ii) $\frac{d y}{d x}=\mathrm{O}($ at $\mathrm{x}=0, \mathrm{y}=0) ;$
$\xrightarrow{\text { Slope. }}$
$\frac{d y}{d x}=\alpha \mathrm{A} \cdot \cos \alpha \mathrm{x}-\alpha \mathrm{B} \sin \alpha \mathrm{x}$
$\Rightarrow O=\alpha A$

(iii) At $x=1, y=0$;

Put in

$$
\operatorname{Equ}^{\sigma}(7) \quad \Rightarrow \quad \mathrm{A} 1=2 \pi
$$

\rightarrow Therefore, the least value of ' P ' is

$$
\begin{aligned}
& \alpha^{2} I^{2}=4 \pi^{2} \\
& \Rightarrow \frac{P_{e}}{E I}=\frac{4 \pi^{2}}{l^{2}}
\end{aligned}
$$

$\rightarrow\left\{\begin{array}{l}\Rightarrow \\ \text { It we will } P_{e}=\left(\frac{4 \pi^{2} E I}{l^{2}}\right) \\ \text { equal to '2l' then, }\end{array}\right.$
3- Direction fixed at one end \& position fixed at the other end:-

\rightarrow Suppose ' V ' is the literal force which applied to maintain the position of pinned-end.
\rightarrow Then, the deflection equation will become

$$
\begin{gathered}
\text { ElI } \frac{d^{2} y}{d x^{2}}=-\mathrm{Py}-\mathrm{Vx} \\
\Rightarrow \frac{d^{2} y}{d x^{2}}=-\frac{P}{E I} \mathrm{y}-\frac{V}{E I} \mathrm{x} \\
\Rightarrow \\
\frac{d^{2} y}{d x^{2}}+\alpha^{2} \mathrm{y}=\frac{-V x}{E I}
\end{gathered}
$$

The solution to equ ${ }^{\sigma} 9$ is:

$$
\begin{equation*}
Y=A \sin \alpha x+B \cos \alpha x \frac{-V x}{P} \tag{10}
\end{equation*}
$$

(i) At $x=0, y=0$

$$
\cdots \quad B=O
$$

(ii) At $x=I, y=0$
(iii) At $x=A \sin \alpha l=\frac{V l}{P}$

$$
\begin{align*}
& \frac{d y}{d x}=0 \\
& \Rightarrow\left(\left(\alpha \mathrm{~A} \cdot \cos \alpha \mathrm{x}-\alpha \mathrm{B} \sin \alpha \mathrm{x}-\frac{V}{P}\right)=0\right. \\
& \Rightarrow\left(\alpha \mathrm{A} \cdot \cos \alpha \mathrm{l}=\frac{V}{P}\right)-\cdots---- \text { (C) } \tag{C}
\end{align*}
$$

\rightarrow We have,

$$
\begin{aligned}
& \tan \alpha \mathrm{l}=\alpha \mathrm{I} \\
& \mathrm{Al}=4.5 \text { ion }
\end{aligned}
$$

\rightarrow The crippling load ' P_{e} ' is

$$
\begin{equation*}
\mathrm{P}_{\mathrm{e}}=\left[\frac{2.05 \pi^{2} E I}{l^{2}}\right] \tag{10}
\end{equation*}
$$

4- Columns with eccentric loading :-

$y=$ the distance from the line of action of load.
\rightarrow The deflection equ ${ }^{\sigma}$ is

$$
\begin{aligned}
& \text { EI. } \frac{d^{2} y}{d x^{2}}=-P y \\
\Rightarrow & \frac{d^{2} y}{d x^{2}}+\alpha^{2} y=O
\end{aligned}
$$

\rightarrow The solution to the above differential equation is

$$
Y=A \sin \alpha x+B \cos \alpha x
$$

(i) At $\mathrm{x}=\mathrm{o}, \mathrm{y}=\mathrm{e}$;
(ii) At $\mathrm{x}=\mathrm{I} / 2, \frac{d y}{d x}=\mathrm{d}$; $\mathrm{B}=\mathrm{e}$
$\left\{\begin{array}{l}\Rightarrow\left(\frac{d y}{d x}\right) \mathrm{x}=\mathrm{M}_{2}=\alpha \mathrm{A} \cos \frac{\alpha l}{2}-\alpha \mathrm{B} \sin \frac{\alpha l}{2} \\ \Rightarrow A \cos \frac{\alpha l}{2}-\mathrm{B} \sin \frac{\alpha l}{2}=0\end{array}\right.$
$\Rightarrow \tan \frac{\alpha l}{2}=\left(\frac{A}{e}\right)$

* \rightarrow Therefore, the column/start will deflect for all values of ' P '.
\checkmark For the case of $\tan \frac{\alpha l}{2}=8$

$$
\begin{gathered}
\Rightarrow \quad \frac{\alpha l}{2}=\frac{\pi}{2} \text { (smallest -angle) } \\
\Rightarrow \quad \alpha \mathrm{l}=\pi
\end{gathered}
$$

\checkmark The corresponding crippling load is

$$
\mathrm{P}_{\mathrm{e}}=\left(\frac{\pi^{2} E I}{l^{2}}\right)
$$

\rightarrow Then, $\mathrm{y}=\mathrm{e}\left[\left(\tan \frac{\alpha l}{2}\right) \sin \alpha+\cos \alpha \mathrm{x}\right]---(11)$
\rightarrow Due to additional B.M. set up by deflection here, the stunt will fail by compressive stress before enter load is reached.
$\rightarrow \mathrm{Eqn}^{\alpha}$ II $(\mathrm{x}=\mathrm{l} / 2)=\mathrm{e}\left[\frac{\sin ^{2} \frac{\alpha l}{2}+\cos ^{2} \frac{\alpha l}{2}}{\cos \frac{\alpha l}{2}}\right]$
$\left.\begin{array}{l}\quad=\mathrm{e} \sec \frac{\alpha l}{2} \quad \mathrm{x}=\mathrm{l} / 2 \\ (\mathrm{M})_{\max }=\left(\mathrm{px} \mathrm{y}_{\max }\right)\end{array}\right\}$

$$
=\text { P.e. } \sec \frac{\alpha l}{2}
$$

\rightarrow Maximum stress developed is due to combined bending \& direct stress

$$
\sigma=\frac{P}{A}+\frac{M}{Z}
$$

$$
\text { Section modulus }=\left(\frac{I}{y}\right)
$$

$$
=\frac{P e\left(P_{c r}+0.26 P\right)}{\left(P_{c r}-P\right)}
$$

5- Column/strut with initial curvature:-

$$
\mathrm{R}_{\mathrm{o}}=\text { initial radius of curvature of neutral surface. }
$$

$R=$ radius of curvature under the action of pure bending.
\rightarrow Strain in the layer of fibre (y-distance from neutral axis)

$$
=\left[\frac{P Q^{1} P Q}{P Q}\right]=\left[\frac{(R+y)(\theta+\sigma \theta)-\left(R_{0}+y\right) \theta}{\left(R_{0}+y\right) \theta}\right]
$$

$=\frac{\left[R(\theta+\sigma \theta)-R_{0} \theta-y \sigma \theta\right]}{\left(R_{0}+y\right) \theta}=\frac{y \sigma \theta}{\left(R_{0}+y\right) \theta}$

$$
\ldots\left\{\begin{array}{r}
\mathcal{F}_{1}(\theta+\sigma \theta)=\left(R_{0}+\theta\right)=\text { Length } \\
\text { Of neutral surface (MN) }
\end{array}\right.
$$

*If $\mathrm{y} \ll \mathrm{R}_{\mathrm{o}}$ (y is neglected in compression with (' Ro_{o})

Hence,

$$
\begin{aligned}
& \mathrm{R}(\theta+\sigma \theta)=\mathrm{R}_{0} \theta \\
& \Rightarrow \sigma \theta=\left(\frac{R_{o}-R}{R}\right) \theta
\end{aligned}
$$

\rightarrow stain $=\frac{y \sigma \theta}{\left(R_{o}+y\right) \theta}$

$$
\begin{gathered}
\left.\begin{array}{c}
\mathrm{R}_{\mathrm{o}} \\
= \\
=\left[\frac{y\left(\frac{R P-R}{R}\right) \theta}{R_{0 . \theta}}\right.
\end{array}\right]
\end{gathered}
$$

$$
=\frac{y}{R_{o}}\left(\frac{R_{o}-R}{R}\right)
$$

$$
=y\left(\frac{1}{R}-\frac{1}{R_{o}}\right)
$$

\rightarrow Normal stress $=\sigma=x$ strain
$\binom{$ Lateral stress }{ is negelectd }$=\mathrm{Ey}=\left(\frac{1}{R}-\frac{1}{R_{o}}\right)$

$$
\begin{aligned}
& \quad x-x=\text { Neutral axis. } \\
& \sigma A=\text { Elemental cross-setting }
\end{aligned}
$$

' y ' from the $\frac{N-A}{(x x)}$.
*For pure bending case, the net normal force on the C / s must be zero.

$$
\text { ऽб. } \mathrm{dA}=\int \mathrm{E}\left(\frac{1}{R}-\frac{1}{R_{o}}\right) y \cdot d A=0
$$

Normal force
\rightarrow Bending moment is balanced by the moment of normal force about ($x-x$).

$$
M=\int б y d A
$$

$$
\begin{align*}
& \Rightarrow \mathrm{M}=\mathrm{E}\left(\frac{1}{R}-\frac{1}{R_{0}}\right) \int y^{2} \cdot d^{A} \\
& \Rightarrow \mathrm{M}=\mathrm{El}\left(\frac{1}{R}-\frac{1}{R_{0}}\right) \tag{12}
\end{align*}
$$

\rightarrow Initial radius of curvature (R_{o})

$$
\begin{equation*}
\mathrm{R}_{\mathrm{o}}=\frac{1}{\left(\frac{d^{2} y}{d x^{2}}\right)} \tag{13}
\end{equation*}
$$

Column with initial curvature :-
\rightarrow From equ ${ }^{\sigma} 12$ \& 13, we have
\rightarrow The differential equ ${ }^{\text {EI }\left(\frac{1}{R}-\frac{1}{R_{0}}\right)=M} \begin{aligned} & \frac{1}{\left(\frac{d^{2} y}{d x^{2}}\right)}\end{aligned}$

$$
\begin{aligned}
& \text { EI }=\left(\frac{1}{R}\right)=M+E I\left(\frac{1}{R_{0}}\right) \\
\Rightarrow & \mathrm{EI} \frac{d^{2} y}{d x^{2}}=M+E I \cdot \frac{d^{2} y_{0}}{d x^{2}}
\end{aligned}
$$

\rightarrow Assume the cl

$$
y_{0}=C \cdot \sin \frac{\pi^{2}}{l}
$$

\rightarrow Equ ${ }^{\circ} 14$ can be written as

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+\alpha^{2} y=\frac{d^{2} y 0}{d x^{2}} \tag{14}
\end{equation*}
$$

$$
\Rightarrow \quad \frac{d^{2} y}{d x^{2}}+\alpha^{2} y=-\left(\frac{C \pi^{2}}{l^{2}}\right)\left(\sin \frac{\pi x}{l}\right)
$$

\rightarrow The complete 801^{n} to eqn ${ }^{\sigma} 15$ is:
$y=A \sin \alpha x+B \cos \alpha x-$

$$
\left(\frac{\left(\frac{C \pi^{2}}{l^{2}}\right)}{\left(\frac{-\pi^{2}}{l^{2}}+l^{2}\right)}\right) \sin \frac{\pi x}{l}
$$

(i)At $\mathrm{x}=\mathrm{o}, \mathrm{y}=\mathrm{O} ; \quad \mathrm{B}=\mathrm{O}$
(ii) At $\mathrm{x}=\frac{l}{2}, \frac{d y}{d x}=\mathrm{O} ; \quad \mathrm{A}=\mathrm{O}$
\rightarrow Therefore, $\mathrm{y}=\left[\frac{\left(\frac{c \pi^{2}}{l^{2}}\right)}{\frac{\pi^{2}}{l^{2}}-l^{2}}\right] \sin \frac{\pi x}{l}$
$=\left(\frac{C x P_{c r}}{P_{c r}-P}\right) \sin \frac{\pi x}{l}$

-: Bucking of Columns :-

1) Short column \& Long column :-

Long column (Euler's formula) :- (Base-fixed \& other end free)

\rightarrow We Like to find out the minimum value of Load (P) for which the column isbuckled.
\rightarrow The minimum Load (P) is called critical Load/crippingLoad/Euler Load.

$$
\begin{aligned}
& \quad M_{x}=-P(б-y) \\
& \Rightarrow E I\left(\frac{d^{2} y}{d x^{2}}\right)=-P(б-y) \\
& \Rightarrow \frac{d^{2} y}{d x^{2}}-\left(\frac{P}{E I}\right) y=-P б \\
& \text { Assume } \alpha^{2}=\frac{P}{E I} \\
& y=A \sin \alpha x+B \cos \alpha x+\text { б }
\end{aligned}
$$

Boundary condition

(i) at $\mathrm{x}=0, \mathrm{y}=0$
(ii) at $x=I, y=$ (б)
(iii) at $x=0, \frac{d y}{d x}=0$

$$
\mathrm{A}=\mathrm{o}, \mathrm{~B}=
$$

$$
y=\sigma(1-\cos \alpha x)
$$

$$
\text { put } x=I, y=б
$$

$$
\rightarrow б=б(1 \cos \alpha l)
$$

$$
\Rightarrow \sigma \cos (\alpha \mathrm{l})=0
$$

\rightarrow If $\sigma=o$,the column stands straight in vertical direction
\& No Limitation is imposed to get the magnitude of Load ' P '.
$\operatorname{Cos} \alpha \mathrm{I}=0$
$\Rightarrow \alpha \mathrm{I}=\frac{n \pi}{2}$ (where $\mathrm{n}=1,3,5 \ldots \ldots$.
\rightarrow To find smallest value of ' P ', take $\underline{n=1}$.

$$
\alpha 1=\frac{\pi}{2}
$$

$\Rightarrow\left(\frac{P_{c r}}{E I} \cdot l^{2}\right)=\frac{\pi^{2}}{4}$
$\Rightarrow P_{c r}=\left(\frac{\pi^{2} E I}{4 l^{2}}\right)$
Note
(a) $P<P_{c} r$; б $=0$ \& column is in stable position.

